Staphylococcal Septicemia in an Athlete

A Case Report and Review of Recent Literature

Thomas O. Clanton, MD and James E. Butler, MD

Although skin infections are common in the athlete, there has been no report of the subsequent development of septicemia. Herein we report a case of staphylococcal septicemia that occurred in a major college football player in order to outline the etiology, clinical manifestations, diagnosis and treatment of this illness.

Case Report

J. E. S. is a 21-year-old black starting running back for the Rice Owls football team. On Thursday, Nov. 6, 1975, he awakened with severe pain in the right shoulder. He reported to the trainer who determined that his problem was in the right acromioclavicular joint where he had been hurt 6 weeks previously. He then had an x-ray which showed heterotopic ossification over the right acromioclavicular joint.

Hydrocortisone and Xylocaine® were injected into the acromioclavicular joint area. He was treated with hot packs that afternoon, but was unable to practice. On the evening of Nov. 6, he was started on Motrin® and hydrocortisone (Medrol®) with the presumptive diagnosis of acute bursitis.

Two days later he played in a regular varsity game. On Sunday morning in the training room at the regular post-game examination, he was noted to have marked induration of the right trapezius muscle with decreased tenderness over the acromioclavicular joint. He had no other complaints until the following day when he was unable to get out of bed. The trainer went to his dormitory room and found him complaining of severe pain in the right groin with inability to move the leg or walk. He was seen by an orthopaedist who felt that he might have iliopsoas bursitis. Low-dose x-ray therapy was instituted on Monday afternoon, Nov. 11.

By Nov. 13, the patient had not responded to this treatment and was complaining of chills and fever, so he was admitted to the hospital for further evaluation. Vital signs on admission included blood pressure of 190/110, pulse 100, temperature 101.6°F. Physical examination revealed slightly icteric sclerae, a Grade II/VI systolic ejection murmur, pain and tenderness over the right trapezius muscle and acromioclavicular joint and pain and tenderness in the right groin along the course of the adductor tendon and over the symphysis pubis. Overnight, his temperature rose to 105°F. Initial hemogram showed hemoglobin 13.3 gm %, hematocrit 39.5%, white blood count 12,800 with a shift to the left. The SMA-12/60 showed an SGOT of 110 (normal 7-40), alkaline phosphatase 170 (normal 30-85), total bilirubin 2.7 mg % (normal, less than 1.0 mg %), and the remainder of the tests normal. A sickle cell preparation was negative as was the Australian antigen, and chest x-rays were normal.

Therapy Continues

On Nov. 14, the patient was started on penicillin 2 million units every 4 hours intravenously. On the following day admission blood cultures had grown Staphylococcus aureus resistant to penicillin. The patient was immediately changed from penicillin to methicillin, 2 gm intravenously every 4 hours. On Nov. 16, there was fluctuance in the area of the right acromioclavicular joint. A needle aspiration of this area under aseptic conditions

*From the Departments of Orthopaedics, The University of Texas Health Science Center, Hermann Hospital and Rice University, all of Houston, Texas.
yielded 5 ml of thick yellow pus which subsequently grew the same organism.

The patient was then taken to the operating room for incision and drainage. At the time of surgery, there was a large hole in the capsule over the acromioclavicular joint where the intraarticular sepsis had evacuated itself. Pus had dissected along the anterior border of the trapezius muscle toward the base of the neck, where a large abscess was located. Thirty milliliters of thick purulent material was evacuated. The articular cartilage in the acromioclavicular joint was absent, but the bone appeared intact. A half-inch Penrose drain was inserted into the depths of the abscess, and the wound was closed loosely. The patient showed dramatic improvement almost immediately, and studies were initiated to evaluate the aortic systolic murmur which had been present since admission. This was a systolic flow-type murmur by examination and was suspected to be benign in nature. This was substantiated when the electrocardiogram and echocardiogram were both normal, and the murmur had resolved by the end of the first week of hospitalization. Serial laboratory studies were begun along with serial x-rays. X-rays of the right shoulder and right hip showed changes consistent with septic arthritis. These x-rays are shown in Figures 1 (A–C) and 2 (A–C). The drain in the right shoulder was advanced daily and removed after 5 days. In 2 weeks, the wound had healed and there was no further drainage. The symptoms in the right adductor area gradually responded to treatment. He received a total of 4 weeks of intravenous therapy using methicillin, 2 gm intravenously every 4 hours. The patient’s general condition improved, and during the last 14 days of his hospitalization he was out on pass for 3 hours a day to attend classes. On Nov. 30, the total bilirubin had returned to less than 0.5 mg % and the elevated liver enzymes gradually returned to normal over the next 2 weeks. Serial urin analyses and creatinine studies were normal.

The patient was discharged on Dec. 15, after a hospitalization of 31 days. He was discharged on cloxicillin, 500 mg q.i.d. for 1 month and has made an uneventful recovery. He participated in varsity football and track during the spring.

Etiology

Staphylococcus is an ubiquitous organism found on the skin, within the respiratory and genitourinary tracts and in the environment. Body sites can become colonized with pathogenic strains of staphylococci in carriers who may become self-infected at times of altered resistance or who may be a source of infection for others.37 Active staphylococcal infections are more important in cross infection than the carrier state, but pathogenic staphylococci can be transferred in either condition by direct contact, fomites, or airborne transmission.37,39,70,90,119,114

Following bacterial contamination, a state of impaired resistance must be present for infection to become established.24,25,39 Such alterations in host resistance may occur through the loss of skin continuity; following viral respiratory illnesses; during treatment with glucocorticoids, immunosuppressants, antimetabolites or broad-spectrum antibiotics; or in association with underlying diseases such as diabetes mellitus, alcoholism, cardiovascular insufficiency, malignancies, dysproteinemias, agranulocytosis, renal failure, ulcerative colitis or liver disease.1,24,25,37,39,58,86,92,108

Obviously, many of these conditions are applicable primarily to the elderly, debilitated or more chronically ill population than to healthy athletes. However, breaks in the skin from abrasions, wounds or burns increase the sus}-
ceptibility to infection, and athletes, especially football players, are subject to such injuries. Among these are "rug burns" caused by artificial turf and hand lacerations produced by equipment. These lesions may be persistently re-injured and resist healing until the season's conclusion, predisposing them to infection. Furthermore, folliculitis, furuncles, carbuncles and acne with secondary furunculosis are staphylococcal infections prevalent among younger age groups, and furunculosis is particularly common in football players and wrestlers.81

Those treating athletes must be aware that serious infections, including life-threatening septicemia, can be the consequence of superficial infections which appear to be innocent.119 In the case presented, the athlete had several skin lacerations and abrasions, including a particularly inflamed and suppurative lesion on the dorsal aspect of the right index finger over the proximal interphalangeal joint.

Clinical Manifestations

Following superficial infections and bacteremia, there is distant seeding of bacteria, resulting commonly in deep abscess formation, a response elicited by the specific host reaction to staphylococci.96 Serious infections such as brain abscess;75,80,96,106,121 meningitis;21,100 pneumonia70 and empyema;43 osteomyelitis;107,118 endocarditis; 21,59,64,90,101,111 pericarditis;14,34 myocardial,99,100,111 liver,16,26,95,98,99 splenic,99,100 adrenal,23,24 perinephric,102 and kidney abscesses;99,103 as well as septic arthritis,46,54,68,119 may result. Therefore, presenting symptoms may be those of generalized infection, local abscess formation, or a combination of the two.

Once the full-blown picture of septicemia develops, a life-threatening situation exists. Mortality rates in the series reviewed ranged from 27% to 82%, with an average mortality rate of approximately 50%.1,7,24,35,53,54,58,66,68,76,86,106,111

Fever, chills and change in mental status are usually present, together with any of the following: malaise, nausea, vomiting, symptoms from metastatic lesions or myalgia. There are generally two stages of septicemia: The first stage is characterized by high cardiac index, good response of body homeostatic mechanisms to infection and excellent prospects for complete recovery with prompt institution of appropriate therapy. The second stage is septic shock manifested by a low cardiac index, hypotension, oliguria and variable response to therapy.49

The multiplicity of findings in septicemia makes the differentiation of signs and symptoms challenging. Mental aberrations can be secondary to the toxic state, meningitis or brain abscess formation.52,80,100,111 Rapid improvement with appropriate antimicrobial therapy may help distinguish the former two conditions.7,12,117 Jaundice can appear on the basis of a hemolytic anemia induced by the hemolysin toxins produced by the staphylococci or, more frequently, as a result of microabscesses in the liver with elevation of liver enzymes.2,26,95,99 Other considerations are congestive liver dysfunction from cardiovascular insufficiency caused by endocarditis and preexisting liver disease.18,99 Heart murmurs may be heard and they pose a serious diagnostic enigma, since endocarditis is a constant threat and common complication. Athletes, however, often have insignificant systolic flow murmurs, and the hypermetabolic state with increased cardiac rhythm.

Fig 2. X-rays of the symphysis pubis of the football player discussed by the authors also show changes that are consistent with septic arthritis. (A) X-ray taken on the day of admission. (B) After three weeks of intravenous therapy. No surgery was performed. (C) Two months post onset, asymptomatic state.
output can also produce or accentuate a systolic flow murmur.

In order to diagnose the presence of bacterial endocarditis, there should be a change in any preexisting murmur, a changing rhythm, multiple peripheral embolic lesions, ECG changes, and/or alterations of valve leaflets by echocardiography. Other clues to the diagnosis are the presence of congenital or valvular heart disease and the general course of the patient and his murmur with close attention paid to any signs of progressive valve dysfunction. These ancillary diagnostic clues become exceedingly important in murmureless bacterial endocarditis. Typical findings may be absent in a substantial number of cases, and a high index of suspicion is always warranted in the presence of bacteremia.

Septic arthritis with severe joint pain and limitation of range of motion is another complication that poses a major problem of differentiation for the physician treating the athlete, especially when joint pain is his presenting complaint. Attention should be directed to systemic symptoms of fever, chills, malaise and increasingly easy fatigability, as well as examining the joint for warmth, swelling, tenderness and degree of inflammation. Symptoms of pneumonia, which develop during staphylococcal septicemia, characteristically include pleuritic chest pain, cough productive of a creamy pink or purulent sputum, and progressive dyspnea, but these typical symptoms may be absent. The chest x-ray usually shows unilateral or bilateral bronchopneumonia affecting the lower lobes. Pneumatoceles are diagnostic, and empyema or pneumothorax may be seen. Other occasional findings in septicemia are splenomegaly from multiple splenic abscesses and infarcts, hematuria from similar kidney lesions, abdominal masses from renal or perinephric abscesses, and peripheral skin manifestations such as petechial hemorrhages, pustular purpura, Osler's nodes, subcutaneous abscesses and toxic epidermal necrolysis.

Diagnosis

Once presented with any of this vast array of symptoms and clinical findings, the diagnosis of staphylococcal septicemia can only be made by the growth of the organism in cultures taken from the blood using sterile technique. Preferably, the organism will be grown in more than one, if not all, cultures obtained from more than one venipuncture site. When possible, cultures should be taken prior to the first dose of antibiotics. Cultures may be made from the anterior nares, throat, or suspicious skin lesions; particularly from joint aspiration, Gram stain bacteria and pustular purpura which are pathognomonic skin lesions in septicemia. A swollen, inflamed joint should be aspirated early under strictly sterile conditions and the aspirant sent for Gram stain, culture and sensitivity studies. Since the results of cultures are not generally available for 24 hours, there has been a search for more rapid means of detecting bacteremia. A method of radiometric detection of bacterial growth using Carbon-14-labeled glucose has been described with the results available as early as 6 hours.

The nitroblue tetrazolium test has been performed using blood and synovial fluid with the findings of increased numbers of positive-staining cells in cases of septic arthritis, septicemia and other infectious conditions. This test was positive in all of 29 cases of bacteremia in one study, and results were known within the hour. Gas chromatography, light-scattering techniques, and impedance measurements are other experimental methods under investigation for rapid detection of bacteremia. Nonetheless, blood cultures remain the keystone to the diagnosis of septicemia and must be performed whenever this is suspected.

Treatment

Treatment centers around the proper diagnosis with microbiologic studies. In septicemia, prompt institution of the appropriate antimicrobial agent is mandatory to prevent a disastrous outcome. Consequently, empirical therapy should begin with a penicillinase-resistant antibiotic such as nafcillin, oxacillin, methicillin or cephalothin. The antibiotic is administered perenterally prior to the results of blood cultures based upon the clinical picture and Gram stain of any material aspirated from an inflamed joint or skin lesion. Culture results are generally available within 24 hours, and sensitivities plus penicillinase production tests by 48 hours. Serum bacterioidal levels should be done on all patients when possible. Patients with septicemia require at least 4 weeks of parenteral antibiotics and should be discharged on cloxacinil, dicloxacinil or a cephalosporin for an additional month. It could become necessary to alter therapy once bacteriologic and in vitro susceptibility data become available. The physician should be aware of the rare staphylococci that are methicillin-resistant and that may be resistant to multiple antibiotics.

In such cases, vancomycin is the drug of choice. The use of the semisynthetic penicillins has resulted in a reduced mortality rate from serious staphylococcal infections; but complications of therapy include hypersensitivity reactions, superinfection or methicillin nephritis characterized by oliguria, azotemia, hematuria (microscopic or gross) and cosinophilia. Phlebitis is common with intravenous administration of cephalothin, nafcillin and vancomycin, and the latter can also cause renal damage and deafness.

In cases where there is deep abscess formation, surgical intervention is often necessary. The reason for this is that large abscesses contain phagocytized bacteria in neutrophils of low metabolic activity. These bacteria are not susceptible to bacteriocidal agents, even though they
penetrate the abscess cavity and bacteriocidal concentrations are reached.82, 84,87,92 The stage of the infection, the size of the abscess and its accessibility are the determinants of the most effective means of surgical intervention. When the infection is located superficially, there are several alternatives. Many furuncles and carbuncles will "point" and spontaneously discharge their contents without further consequences or need for other treatment. Hot compresses are often helpful and local skin cleansing cannot be over-emphasized.81 In severe cases, needle aspiration or surgical incision and drainage may be necessary for rapid, safe resolution of these skin lesions. Surgical therapy is unnecessary for the majority of liver, kidney and splenic abscesses, since microabscesses are the predominant pathology in these organs.16,19,64,80,89,94,99,100 and these usually will resolve during prolonged antibiotic therapy. Nevertheless, pyogenic abscesses may be solitary, multiple or multilocular, and drainage is essential for selected solitary or large multiple lesions. Perinephric abscesses should be considered along with renal abscesses in septicemic patients who complain of unilateral pain in the renal area and definite localized tenderness at the costovertebral angle, since these lesions lend themselves well to surgical evacuation.20,102 Cases of empyema can be treated by thoracentesis, closed drainage using chest tubes, or open thoracostomy and drainage.5,42,43,71,97 Brain abscesses are another complication of septicemia in which surgical treatment assumes major importance.75,82,96 During the acute process, the patient should receive appropriate antibiotics, antinflammatory agents such as steroids and closely monitored fluid therapy. The abscess will begin to wall off after 10 days, allowing localization and drainage.80 This is accomplished by intermittent aspiration, constant drainage or excision of the abscess, with only fair results in the majority of cases.60,75,80,86,121 Septic arthritis is yet another complication in which prompt surgical intervention is paramount. Location is a deciding factor in one's approach, since easily accessible joints such as the acromioclavicular, glenohumeral, knee and elbow joints may be adequately treated by aspiration, whereas the hip and sacroiliac joints are often difficult to aspirate repeatedly and may require open drainage.46,61 The use of closed-suction irrigation systems has been discussed previously and may be an effective tool in the treatment of septic joints.4,30,31,61 Clinical judgment is crucial in determining which patients with septicemia require more than just the routine course of antibiotics and aspiration of abscesses. Patients who are well treated and survive staphylococcal septicemia rarely have late complications.117 However, persistent fever and leukocytosis despite adequate serum antimicrobial activity suggest an undrained, deep abscess or superinfection.74 Unsuspected deep abscesses may be detected using gallium-67 scanning.6,13,72 Rarer postsepsis syndromes include febrile pleuropericarditis,78 periureteritis plastica,10 and acute diffuse glomerulonephritis.41,103 Weight loss and weakness are seen in the recovery phase, and athletes must be brought back slowly to competitive levels.

Conclusion

We have presented a case of staphylococcal septicemia occurring in a major college football player who recovered and returned to competition following surgical drainage of an abscess and appropriate antibiotic therapy. Selective aspects of etiology, clinical manifestations, diagnosis and management are presented for those who may encounter this serious infection.

References

17. Brooks K, Sodeman T: Rapid detection of bacteremia by a